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The problem of applying sensitivity analysis to a one-dimensional atmospheric radio fre-
quency plasma discharge simulation is considered. A fluid simulation is used to model
an atmospheric pressure radio frequency helium discharge with a small nitrogen impurity.
Sensitivity derivatives are computed for the peak electron density with respect to physical
inputs to the simulation. These derivatives are verified using several different methods to
compute sensitivity derivatives. It is then demonstrated how sensitivity derivatives can be
used within a design cycle to change these physical inputs so as to increase the peak elec-
tron density. It is also shown how sensitivity analysis can be used in conjunction with
experimental data to obtain better estimates for rate and transport parameters. Finally,
it is described how sensitivity analysis could be used to compute an upper bound on the
uncertainty for results from a simulation.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Since the seminal work of Graves and Jensen [1], there have been numerous efforts to accurately simulate plasma dis-
charges [2–8], which are used in a variety of applications including microelectronics manufacturing, lighting, and plasma
display panels. Many of these simulations have been motivated by a need to better understand the underlying physics in
plasma discharges. A variety of approaches have been used including particle-in-cell methods, fluid simulations, and hybrid
models.

There have also been efforts to use simulations of plasma discharges to perform parameter studies, or qualitative sensi-
tivity analysis [9–12]. The typical approach that is used is to change a given parameter for a plasma discharge (e.g. pressure,
temperature) and run the simulation with the new value for the parameter to see what changes have taken place. This can
provide valuable information about the sensitivity of the plasma behavior to various parameters and can be useful for opti-
mization or design. However, this can be computationally expensive, as the simulation must be run every time that a param-
eter is changed. In addition, although this approach can provide qualitative information, it does not yield any quantitative
sensitivity derivatives.

Quantitative sensitivity analysis, using finite differences, complex perturbations, direct differentiation or adjoint, can be
used to compute numerical sensitivity derivatives of cost functions to given design variables. In recent years, sensitivity
derivatives have been computed for unsteady time-dependent problems [13–16]. In a previous paper, the authors used
time-dependent sensitivity analysis to compute sensitivity derivatives for a one-dimensional low-pressure helium discharge
simulation [17], where only electrons and helium monomer ions were modeled. To the knowledge of the authors, this was
the first time that quantitative sensitivity derivatives were computed for a plasma discharge simulation.
. All rights reserved.
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High pressure glow (HPG) discharge systems are more economical than low pressure discharge systems since no vacuum
pump is needed. For this reason, there has been a plethora of research done on HPG plasmas in the last decade. Many appli-
cations of HPG discharges have been reported including etching and deposition [18,19], decontamination of chemical and
biological warfare agents [20], the treatment of dental cavities [21], and as a means for sterilization [22,23].

In the current paper, quantitative sensitivity analysis has been applied to a one-dimensional high-pressure helium/nitro-
gen glow discharge simulation. The paper is organized in the following manner. Section 2 describes the equations and
boundary conditions used in the simulation. Section 3 describes the numerical methods and discretization used to obtain
a periodic solution. Section 4 presents a review of the different methods that can be used to compute sensitivity derivatives.
Section 5 presents the verification of the sensitivity derivatives and several applications of sensitivity analysis for a plasma
discharge simulation. The paper is summarized in Section 6.
2. Description of the model

2.1. Governing equations

A one-dimensional fluid model accounting for ten chemical species is used to simulate a plasma discharge that was mod-
eled in a previous work [11]. Note that this model does not take into account effects from non-Maxwellian particle distri-
butions. The discharge gas is assumed to be predominantly helium with a very small amount of nitrogen. It is assumed
that the nitrogen has an impurity mole fraction of 5 � 10�7. The following chemical species are used in the model: electrons
(e), helium atoms (He), monomer helium ions (He+), dimer helium ions ðHeþ2 Þ, monomer helium metastables (He*), dimer
helium metastables ðHe�2Þ, monomer nitrogen atoms (N), dimer nitrogen molecules (N2), monomer nitrogen ions (N+), and
dimer nitrogen ions ðNþ2 Þ. These equations are summarized below:
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Eq. (1) is the continuity equation which is used for each species density. Eq. (2) expresses the flux for each species with the
drift–diffusion approximation. Eq. (3) is the electron energy equation, while the electron energy flux is expressed in Eq. (4).
The total current in the discharge is specified using Eq. (5) and the electric field is expressed in Eq. (6).

Bringing all the equations together allows one to express them in conservative form as
@Q
@t
þr � F ¼ S; ð7Þ
where Q represents the time-dependent terms in the governing equations, F represents the flux terms in the governing equa-
tions and S represents the source terms in the governing equations.
2.2. Transport properties

The values for transport properties are found in the literature [24–26] and are summarized in a previous work [11]. Dif-
fusion coefficients can be computed from reduced diffusion coefficients as Dk ¼ D0k

760
p

� �
, while mobilities can be computed

from reduced mobilities as lk ¼ l0k 760
p

� �
, where p is measured in Torr.

The values for reduced diffusion coefficients and reduced mobilities are shown in Table 1.
2.3. Chemical reactions

The values used for reaction rate coefficients and other coefficients in determining production and destruction of chem-
ical species are found in previous works [6,27–29] and are compiled in a previous work [11]. The reactions are summarized
in Table 2. The electron energy gains and losses for given reactions are shown in Table 3.



Table 1
Transport properties for species in plasma discharge model.

Species D0kðm2= sec; K; eVÞ l0kðm2=V� secÞ

e 1:737� 10�1 Te
17;406

� �
�1.132 � 10�1

He+ 5.026 � 10�5 1.482 � 10�3

Heþ2 8,148 � 10�5 2.403 � 10�3

N+ 9.710 � 10�5 2.863 � 10�3

Nþ2 1.015 � 10�4 2.993 � 10�3

He* 4.116 � 10�4 –
He�2 2.029 � 10�4 –
He 4.116 � 10�4 –
N 1.955 � 10�4 –
N2 1.075 � 10�4 –

Table 2
Reaction mechanisms used in plasma discharge model.

Reaction Numerical model (m, molecules, sec, K)

e + He ? He* + e G1 ¼ ð2:308� 10�16ÞnenHeT0:31
e e�2:297�105=Te

e + He* ? He + e G2 ¼ ð1:099� 10�17ÞnenHe� T
0:31
e

e + He ? He+ + 2e G3 ¼ ð2:584� 10�18ÞnenHeT0:68
e e�2:854092�105=Te

e + He* ? He+ + 2e G4 ¼ ð4:661� 10�16ÞnenHe� T
0:6
e e�5:546�104=Te

eþHe�2 ! Heþ2 þ 2e G5 ¼ ð1:268� 10�18ÞnenHe�2 T0:71
e e�3:945�104=Te

eþHeþ2 ! He� þ He G6 ¼ ð5:386� 10�13ÞnenHeþ2
T�0:5

e

He* + He* ? He+ + He + e G7 ¼ ð2:7� 10�16ÞnHe�nHe�

He� þ 2He! He�2 þ He G8 ¼ ð1:3� 10�45ÞnHe�nHenHe

Heþ þ 2He! Heþ2 þ He G9 ¼ ð1:0� 10�43ÞnHeþnHenHe

He� þN2 ! Nþ2 þ Heþ e G10 ¼ ð7:0� 10�17ÞnHe�nN2

He�2 þ N2 ! Nþ2 þ 2Heþ e G11 ¼ ð7:0� 10�17ÞnHe�2 nN2

Heþ þ N2 ! Nþ2 þ He G12 ¼ ð5:0� 10�16ÞnHeþnN2

He+ + N2 ? N+ + N + He G13 ¼ ð7:0� 10�16ÞnHeþnN2

Heþ2 þ N2 ! Nþ2 þ 2He G14 ¼ ð5:0� 10�16ÞnHeþ2
nN2

Heþ2 þ N2 ! Nþ þ Nþ 2He G15 ¼ ð7:0� 10�16ÞnHeþ2
nN2

2eþ Nþ2 ! N2 þ e G16 ¼ ð5:651� 10�39ÞnenenNþ2
T�0:8

e

eþNþ2 ! NþN G17 ¼ ð2:540� 10�12ÞnenNþ2
T�0:5

e

e + N2 ? N + N + e G18 ¼ ð1:959� 10�12ÞnenN2 T�0:7
e e�1:132�105=Te

e + N ? N+ + 2e G19 ¼ ð8:401� 10�11ÞnenNe�1:682�105=Te

eþN2 ! Nþ2 þ 2e G20 ¼ ð4:483� 10�13ÞnenN2 T�0:3
e e�1:81�105=Te

Table 3
Electron energy gains and losses used in plasma discharge model.

Reaction Energy gain or loss (eV)

e + He ? He* + e DEe
1 ¼ 19:8

e + He* ? He + e DEe
2 ¼ �19:8

e + He ? He+ + 2e DEe
3 ¼ 24:6

e + He* ? He+ + 2e DEe
4 ¼ 4:78

eþHe�2 ! Heþ2 þ 2e DEe
5 ¼ 3:4

He* + He* ? He+ + He + e DEe
7 ¼ �15:0

e + N2 ? N + N + e DEe
18 ¼ 9:757

e + N ? N+ + 2e DEe
19 ¼ 14:5

eþN2 ! Nþ2 þ 2e DEe
20 ¼ 15:6
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2.4. Boundary conditions

The fluxes for the electrons, metastable species and monomer nitrogen atoms at the boundaries are assumed to be kinet-
ically limited thermal fluxes which are directed outward. Thus, at the left boundary, these fluxes are negative, while at the
right boundary, these fluxes are positive. The ion fluxes are assumed to be mobility limited. One change that has been made
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to the model used by Yuan and Raja is that the mobility limited ion fluxes are only computed when the electric field is accel-
erating them towards the boundaries. Otherwise these fluxes are set equal to zero. This ensures that additional helium and
nitrogen particles are not added to the simulation through the mobility flux boundary conditions.

Recombination is assumed to occur at the boundaries, and all helium and nitrogen particles are assumed to return to the
discharge as either He or N2 particles. The electron temperature is set equal to 0.5 eV at each boundary. At one boundary of
the discharge, the potential is grounded. At the opposite boundary, the voltage is computed using the specified boundary
fluxes of the charged particles. It is assumed that there is no secondary electron emission at the boundaries. The boundary
conditions for each particle species are summarized in Table 4.

3. Numerical method

3.1. Mesh discretization

The domain is discretized into control volumes by distributing mesh points across the domain according to an algorithm
that clusters the points close to the boundaries, which has been used in previous simulations [30]. The faces of the control
volumes are designated to be halfway in between the mesh points except for at the boundaries, where the mesh points are
coincident with the cell faces. The mesh setup is shown in Fig. 1.

The spatial discretization is represented with subscripts by the index k. Integer values such as k and k + 1 denote a value
within a given cell. Half-integer values such as kþ 1

2 and k� 1
2, denote the values at cell faces. The distance between points k

and k + 1 is denoted as Dxk while the distance between faces kþ 1
2 and k� 1

2, the cell volume, is represented by Xk.

3.2. Spatial discretization

A finite volume approach is used to discretize the equations. A staggered mesh and non-staggered mesh approach have
each been implemented for the simulation. Although both approaches yield the same results, only results for the staggered
grid approach are presented here. In this approach, the values for the potential V are stored at cell faces, and values for the
remaining variables (species densities and electron energy) are stored at cell centers. For M control volumes, there are M
unknowns for each species densities and the electron energy, with M + 1 unknowns for the voltage. However, since the volt-
age is grounded at one electrode, and its value does not change during the simulation, this results in M unknowns for the
voltage, making this a straightforward system of equations to solve since each of the M control volumes has 12 unknown
variables associated with it, corresponding to the 10 particle species densities, the electron energy and the voltage.

Applying a finite volume method to the governing equations and applying Green’s theorem to Eq. (7) results in the fol-
lowing discretization:
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Fig. 1. Discretization of domain into M control volumes with M + 1 grid points.
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The time derivatives and source terms are computed at the center of each control volume. Their contribution to the residual
is computed by multiplying these terms by the length of the control volume. The fluxes are computed at each cell face.

For neutral and metastable particles, the flux is entirely diffusive and is discretized as
Ci;kþ1
2
¼ �Di

ni;kþ1 � ni;k

Dxk

� �
: ð9Þ
The logarithms of the charged particle densities and the electron energy are used as fundamental variables in the simulation,
as was done in a previous work [17]. This is done because these quantities are inherently positive, and because second-order
spatial accuracy in the finite volume scheme is achieved by extrapolating values from cell centers to cell faces. In regions
where there are steep gradients, this extrapolation can lead to negative densities or a negative electron energy.

Thus, the charged particle flux at each face is computed as
Ci;kþ1
2
¼ �Di;kþ1

2

ni;kþ1 � ni;k

Dxk

� �
þ lini;kþ1

2

1
2
ðEk þ Ekþ1Þ

� �
: ð10Þ
In Eq. (10), ni;kþ1
2

is computed differently based on the sign of the electric field and the species charge. It is computed as8
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2
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exp Qi;k þ 1
2 Dxk
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@x
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if ZiE P 0
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@x
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if ZiE < 0

><>: : ð11Þ
The electric field in Eq. (10) is computed as
Ek ¼ �
Vkþ1

2
� Vk�1

2

� �
Xk

: ð12Þ
Note that the convective flux discretization at the face is the same for the cell to the right of the face and the cell to the left of
the face. For one cell, this flux is subtracted from the residual and for the other, the flux is added to the residual. In this way,
the total particle flux is conserved in the simulation.

The current conservation equation, which is different from the other equations in that it involves the time derivative of a
spatial derivative, is discretized as
@
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eZi
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Each equation is non-dimensionalized for stable and efficient computation. They are non-dimensionalized in a way that is
similar to previous computational models [7,30].

3.3. Temporal discretization

All time derivatives are computed using a second-order backwards difference formula as
@a
@t

� �n

k

¼ 3an
k � 4an�1

k þ an�2
k

2Dt
; ð14Þ
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where Dt is the time step used in the simulation. A fully implicit method is used, meaning that all fluxes and source terms are
evaluated at the current time step n.

3.4. Solving the system of equations

Newton’s method is used to solve the discretized linear equations at each time step. The Newton iterations continue with-
in a given time step until the norm of the residual in a given Newton iteration falls below a specified tolerance. This indicates
that the updated value Qn has been computed, and the solution is advanced to the next time step. This process is repeated
until a periodic solution has been computed.

Newton’s method requires the computation of the Jacobian matrix @R
@Q , which is the linearization of the residual vector R

with respect to the variable vector Q. The Jacobian matrix is computed analytically for computational efficiency. For this one-
dimensional simulation with second-order spatial accuracy, the Jacobian matrix is block penta-diagonal. The problem is par-
allelized to run on multiple processors and uses GMRES [31] with an approximate ILU preconditioner [32].

To reduce the computational runtime of the simulation, initial approximations of the solution variables are computed at
the beginning of each time step. The time derivative of each variable is computed using a third-order backwards difference as
dQ
dt

n�1

¼ 11Q n�1 � 18Qn�2 þ 9Qn�3 � 2Q n�4

6Dt
: ð15Þ
The second and third derivatives of each variable are computed in a similar manner as:
d2Q
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dt
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dt
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dt
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dt
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6Dt
; ð16Þ
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An approximation to the variable at time step n is then computed using a Taylor series expansion along with Eqs. (15)–(17)
as
Qn � Q n�1 þ Dt
dQ
dt

� �n�1

þ Dt2

2
d2Q

dt2

 !n�1

þ Dt3

6
d3Q

dt3

 !n�1

: ð18Þ
Using this approximation for the solution at the next time step has been shown to reduce the computational runtime by 60%.
4. Computing sensitivity derivatives

4.1. Perturbation methods

Perturbation methods rely on a perturbation in a design variable b to compute the sensitivity with regard to a cost func-
tion I. Using a Taylor series approximation, a sensitivity derivative can be computed using finite differences as
dI
db
¼ Iðbþ DbÞ � IðbÞ

Db
: ð19Þ
This can be useful in some cases, but it is subject to cancellation error and can be sensitive to the size of the perturbation D b.
One way to avoid the cancellation error is to use a complex perturbation [33–35]. In this case, the entire computer code is
converted to complex numbers and the design variable is perturbed in the complex plane, allowing the sensitivity derivative
to be computed as the imaginary part of the computed cost function as
dI
db
¼ Imag

Iðbþ iDbÞ
Db

� �
: ð20Þ
The cancellation error is eliminated in this case, but using complex numbers can significantly increase the computational
load for a simulation. Both perturbation methods can compute a sensitivity derivative vector for multiple cost functions with
respect to one design variable, but they suffer from the fact that the process must be repeated for each design variable.

4.2. Differentiation methods

Two different types of differentiation methods are used to compute sensitivity derivatives. The first method is forward
mode direct differentiation [36], which can be used to compute the sensitivity derivatives of an unlimited number of cost
functions with respect to one design variable. In direct differentiation, the sensitivity derivatives are computed as the solu-
tion advances in time.
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The second method is the reverse mode adjoint method [37,38,14], which computes the sensitivity of one cost function to
an unlimited number of design variables. In this case, after the periodic solution has been reached, the sensitivity derivatives
are computed using solution values at each previous time step, going all the way back to the initial conditions.

Differentiation methods can be implemented continuously [39–41] or discretely [42–44]. The continuous sensitivity
method differentiates the governing equations first with respect to the design variables, and then discretizes them, while
a discrete sensitivity method discretizes the governing equations first and then differentiates them with respect to design
variables. Discrete sensitivity methods are used in this work.

The algorithms for time-dependent sensitivity analysis have been expressed in previous papers [13,14,16,17] and are not
reproduced here.

Direct differentiation does not require much storage because the necessary information can be overwritten as the algo-
rithm proceeds. However, if there are multiple design variables, direct differentiation must be repeated for each design var-
iable. Reverse mode adjoint requires more storage than forward mode direct differentiation since the solution vector must be
stored or recomputed at every single time step in the solution process. This can be accomplished either by storing the solu-
tions in memory or by writing out the solutions to a file. If there are multiple cost functions, reverse mode adjoint must be
repeated for each cost function.

The additional work required for adjoint and direct differentiation is equivalent to an extra linear solve at each time step.
In addition, for reverse mode adjoint, the transpose of the Jacobian matrix must be formed.
5. Computational results and discussion

The simulation is run on a 81 point grid. The design variables considered are the scalar components of the reaction rate
coefficients for each of the 20 reactions (k1,k2, . . .,k20), the reduced mobilities and the diffusion coefficients for each species,
the nitrogen impurity fraction fN, the gas pressure p, the discharge gap length l, the rms current density jrms, the frequency f,
and the gas temperature Tgas. The cost functions considered are the average peak electron density and the rms voltage during
the final RF cycle. The simulation is defined to be converged when the average change in the solution values at the middle of
the discharge is less than 1 � 10�6 compared to the values in the previous cycle. Using this criteria, it can take more than
250,000 RF cycles to reach full convergence. This is due to the different timescales associated with the species considered
in the model. Electrons have very small masses and thus respond quickly to changes in the electric field. This requires
one to take a small time step in the simulation. Because of their large masses, the heavier species take many more RF cycles
to reach a time-periodic state. These two factors mean that significant computational runtime is required to reach full
convergence.

However, it is observed that the cost functions considered obtain a value within 10% of the converged value after 5000 RF
cycles. Thus, in the interests of computational efficiency, the simulation is only run for 5000 RF cycles with 400 time steps
per cycle (unless otherwise stated). Simulation results were compared for cases that were run with 41,81,161 and 321 grid
points, and the results showed good agreement. The simulation was run on 4 processors using a Message Passing Interface
(MPI) library for communication.

5.1. Verification of derivatives

To verify the accuracy of the sensitivity analysis, sensitivity derivatives are computed using adjoint, direct differentiation,
and complex perturbations. In this case, the cost function is defined as the average peak electron density over one RF cycle.
The simulation is run with the reaction rate values listed in Table 2, a nitrogen impurity mole fraction of 5 � 10�7, a gas pres-
sure of 600 Torr, a discharge gap length of 2.4 mm, an rms current density of 21.2 mA/cm2, a frequency of 13.56 MHz, and a
gas temperature of 393 K. Table 5 shows the sensitivity derivatives computed using the adjoint method for all 41 design vari-
ables with the peak electron density as the cost function. The derivatives are given using SI units. The derivatives computed
using adjoint and direct differentiation differ have relative errors as large as 2.8 � 10�6 and as small as 4.1 � 10�10, while the
derivatives computed using complex perturbations differ from those computed by the adjoint method with relative errors as
large as 6.4 � 10�2 and as little as 5.9 � 10�6.

It is unclear as to the source of the discrepancies between derivatives computed using complex perturbations and those
computed using the adjoint method and direct differentiation. Theoretically, these derivatives should match to machine zero
precision. Because 5000 cycles are used with 400 time steps per cycle, the simulation is run for a total of 2 million time steps,
with several linear solves at each time step. The range of discrepancy corresponds to an average accumulated difference at
each time step of between 10�8 and 10�12. Unless one obtains an exact linearization for the Jacobian matrix @R

@Q , the deriva-
tives computing using differentiation methods will not be accurate. There could possibly be a mistake in the source code that
can account for these discrepancies.

5.2. Using sensitivity derivatives to increase a given cost function

Sensitivity derivatives can be used to increase or decrease a cost function. There are many steepest descent or trust region
optimization methods that can be used to find a local maximum or minimum. In this case, open source optimization routines



Table 5
Sensitivity derivatives computed using the adjoint method for the average peak electron density.

b Adjoint derivative b Adjoint derivative

k1 �8.122 � 1030 l 1.638 � 1019

k2 �2.183 � 1027 jrms 1.002 � 1016

k3 7.916 � 1032 p 6.396 � 1013

k4 2.701 � 1029 f �1.442 � 109

k5 1.664 � 1034 Tgas �6.843 � 1013

k6 �7.765 � 1027 le 7.538 � 1017

k7 2.007 � 1029 lHeþ �2.707 � 1016

k8 �2.042 � 1059 lHeþ2
�6.132 � 1018

k9 �2.257 � 1056 lNþ �1.497 � 1018

k10 9.288 � 1028 lNþ2
�6.065 � 1017

k11 9.201 � 1031 De 5.665 � 1017

k12 �2.574 � 1026 DHeþ 2.279 � 1016

k13 �1.330 � 1026 DHeþ2
�2.718 � 1018

k14 �6.428 � 1028 DNþ 1.797 � 1018

k15 2.483 � 1029 DNþ2
�1.807 � 1017

k16 �2.294 � 1044 DHe 1.226 � 1011

k17 4.066 � 1026 DHe� 1.115 � 1017

k18 �8.101 � 1020 DHe�2 �7.090 � 1018

k19 3.624 � 1025 DN �9.768 � 1017

k20 1.861 � 1022 DN2 1.523 � 1019

fN 7.676 � 1021
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[45] which are based on trust region methods are used to vary the physical design variables so as to maximize the peak elec-
tron density. Bounds on the physical design variables are put in place so as to prevent arcing, and are based on the parameter
range reported in reference [46]. The initial values and bounds are listed below in Table 6.

The simulation is run for 5000 RF cycles using 800 time steps per RF cycle. A smaller time step is used, because the sim-
ulation is more sensitive to changes in the physical design variables. The initial peak electron density is found to be
2.02 � 1017/m3, and after two design cycles, this had increased to its maximum value of 3.28 � 1017/m3. This maximum va-
lue for the peak electron density is found when the discharge gap length, rms current density, and pressure are at the upper
bound and when the frequency and gas temperature are at the lower bound.

The results obtained here can be compared to the qualitative study done by Yuan and Raja [11]. They found that as the
discharge gap length and rms current density were increased, the peak electron density increased. However, they found that
as the pressure was increased, the peak electron density decreased, which is different from the results obtained from the
optimizer. It is difficult to say why this discrepancy exists, since very few details were given by Yuan and Raja [11] as to
the numerical method that was used and the convergence level that was obtained with their simulation.
5.3. Using sensitivity derivatives to obtain a better estimate for uncertain parameters

It is well known that there is a good degree of uncertainty in the computation of reaction rate coefficients and other
parameters used to simulate reaction chemistry [12,47]. Sensitivity derivatives can be used to obtain better estimates of
these parameters and coefficients, so that results from computational models more closely match experimental data. This
is accomplished by using the reaction rate coefficients and parameters as design variables, and by defining the cost function
to be a function that computes the magnitude of the difference between experimental and computational results. The known
uncertainty in a given design variable is used to determine the maximum and minimum value of that design variable during
the design process. Once the sensitivity derivatives are computed, the design variables are then changed to minimize the cost
function.

In this particular case, it is demonstrated how quantitative sensitivity analysis might be used in conjunction with exper-
iments to obtain better estimates for reaction rates. Three experimental data points on a V-I plot are taken from a previous
work [48], and the reaction rate coefficients and nitrogen impurity mole fraction are used as design variables. These are
Table 6
Bounds for physical design variables.

Design variable Initial value Lower bound Upper bound

l (m) 2.4 � 10�3 1.6 � 10�3 3.2 � 10�3

jrms (mA/cm2) 21.2 10.0 30.0
p (Torr) 600 550 650
f (MHz) 13.56 12.0 25.0
Tgas (K) 393 250 450
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changed during the design process to make the computational data better match the experimental data. The cost function is
defined to be
I ¼
X3

i¼1

ðVi;e � Vi;cÞ2; ð21Þ
where Vi, e is the experimental rms voltage for a given rms current density, and Vi, c is the computational rms voltage for a
given rms current density. Reducing this cost function will result in improving the agreement between the computational
data and the experimental data.

Because cross-section data often has a 50% uncertainty associated with it [47], the reaction rates and transport parame-
ters are bounded between 50% and 150% of the values in Table 2. The nitrogen mole impurity fraction is bounded between
5 � 10�11 and 5 � 10�6, which is consistent with the experimental data [48]. Twenty-five design cycles using the adjoint
method are run for 5000 RF cycles at 400 time steps per cycle on a grid with 81 points. During each design cycle, multiple
function evaluations could be called, resulting in a total of 45 function evaluations. The reduction of the cost function is
shown below in Fig. 2. A comparison of the voltage–current plots at different points in the optimization routine with the
target voltage–current plot is shown in Fig. 3.

The cost function is reduced from 3102 to 188 over the twenty-five design cycles. One can see that the computational
data is changed to provide a much better fit to the experimental data. However, there is still some deviation from the exper-
imental data. There are several possible reasons for this. First of all, the design variables were bounded between 50% and
150% of their original values. It is quite possible that these bounds could be expanded, and that doing so would get a closer
fit on the V-I plot. Second, there are numerous parameters in the simulation whose sensitivities are not computed, namely
the numerical coefficients for powers and exponents of the electron temperature shown in Table 2 that are used to compute
reaction rates for chemical reactions. Using these parameters as sensitivity derivatives could result in a better fit on the V-I
plot. Third, the chemistry model used in the simulation may be incomplete. Because a fluid model was used for the simu-
lation, a Maxwellian distribution for the electrons was assumed, which is not always valid for a plasma discharge. In addi-
tion, there may be certain species or reactions that are not included and would have a significant effect on the V-I profile.

In spite of the deviations from the experimental data, it is clear that the final fit is much better than the initial fit. It is of
interest to determine which parameters were most important in reducing the cost function. One can see that by the twen-
tieth function evaluation, the cost function has been reduced by 87.6%. At this point, those design variables which had chan-
ged by more than 10% from their initial values were determined to be significant in reducing the cost function. These design
variables were De;DHe�2

; DN2 ;le;lHeþ2
; lNþ2

; k1; k3; k11 and fN. The evolution of the values of these design variables relative to
their initial values are plotted in Figs. 4–6. One could conclude that using lower values for k1;DHe�2

; DN2 ;le, and lHeþ2
, and

using higher values for De;lNþ2
; k3; k11 and fN might be more accurate for this particular simulation.

The final values for each design variable relative to the initial values are shown in Table 7. At the conclusion of the design
process, the majority of the design variables are at the limit imposed by the bound constraints.
5.4. Using sensitivity derivatives to compute a bound on computational error

Sensitivity derivatives can be used to assess the effects of uncertainties in input data on the resulting output from a com-
putational model. Reaction rate coefficients and parameters, mobilities, diffusion coefficients and physical parameters (e.g.
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Table 7
Final values for design variables relative to initial values.

Design variable Final value Design variable Final value

k1 0.500 k19 0.500
k2 1.500 k20 1.500
k3 1.500 fN 2.436
k4 1.500 le 0.503
k5 1.312 lHeþ 0.500
k6 0.500 lHeþ2

0.500

k7 1.500 lNþ 1.500
k8 0.500 lNþ2

1.500

k9 0.500 De 1.500
k10 1.500 DHeþ 1.500
k11 1.500 DHeþ2

0.500

k12 0.500 DNþ 0.500
k13 0.500 DNþ2

0.500

k14 1.500 DHe 1.500
k15 1.500 DHe� 0.500
k16 0.500 DHe�2 0.500
k17 1.500 DN 0.500
k18 0.500 DN2 0.500
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gas temperature, pressure) all have an associated uncertainty with them. Sensitivity analysis can be used to compute a max-
imum bound on computational uncertainty for a given cost function. This has been done previously in various fields [49–51].

For a given cost function I, with nd design variables, the maximum bound on computational uncertainty can be computed
as
max jbI � Ij ¼max jDIg j ¼
Xnd

i¼1

dIg

dbn
Dbi

				 				; ð22Þ
where Dbi is the known physical uncertainty in design variable i. To get an accurate measure of the upper bound on the
uncertainty in this simulation one must obtain sensitivity derivatives and uncertainties for 57 parameters. Many of the
uncertainties in these parameters were not reported in the literature, and thus no bound on the uncertainty was computed.
However, with the knowledge of all uncertainties, this could be a useful tool for determining the maximum uncertainty of a
simulation. It should be noted that this analysis shows determines bounds on the results obtained from the computational
model but does not provide a measure of the quality of the model itself.

5.5. Future work

For planned extensions to multiple spatial dimensions, it will be necessary to use Poisson’s equation in place of the cur-
rent conservation equation. The convergence of the computational model will need to be accelerated. There are several



6082 K.J. Lange, W.K. Anderson / Journal of Computational Physics 229 (2010) 6071–6083
approaches that could be used for this. Some authors have used different time steps for the electrons and the ions, due to
their disparate characteristic time scales [3,7]. Other authors have directly solved for the periodic solution of the discharge
[52]. Related to the issue of efficiency is the issue of disk storage. Using adjoint for the current problem, it requires the stor-
age of 93 GB of memory. Extending this problem to multiple dimensions will increase these memory requirements even
further.
6. Summary

Sensitivity derivatives are computed for a one-dimensional simulation of a high-pressure helium glow discharge. The
computed derivatives show good agreement between complex perturbations, direct differentiation, and adjoint. Several
applications for quantitative sensitivity analysis are presented. Sensitivity derivatives can be used to increase or decrease
a given cost function, to obtain better estimates of uncertain parameters, and to compute a maximum bound on computa-
tional uncertainty.
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